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Abstract

As part of the Immunological Genome Project (ImmGen), gene expression was determined in unstimulated (circulating)
mouse neutrophils and three populations of neutrophils activated in vivo, with comparison among these populations and
to other leukocytes. Activation conditions included serum-transfer arthritis (mediated by immune complexes),
thioglycollate-induced peritonitis, and uric acid-induced peritonitis. Neutrophils expressed fewer genes than any other
leukocyte population studied in ImmGen, and down-regulation of genes related to translation was particularly striking.
However, genes with expression relatively specific to neutrophils were also identified, particularly three genes of unknown
function: Stfa2l1, Mrgpr2a and Mrgpr2b. Comparison of genes up-regulated in activated neutrophils led to several novel
findings: increased expression of genes related to synthesis and use of glutathione and of genes related to uptake and
metabolism of modified lipoproteins, particularly in neutrophils elicited by thioglycollate; increased expression of genes for
transcription factors in the Nr4a family, only in neutrophils elicited by serum-transfer arthritis; and increased expression of
genes important in synthesis of prostaglandins and response to leukotrienes, particularly in neutrophils elicited by uric acid.
Up-regulation of genes related to apoptosis, response to microbial products, NFkB family members and their regulators, and
MHC class II expression was also seen, in agreement with previous studies. A regulatory model developed from the ImmGen
data was used to infer regulatory genes involved in the changes in gene expression during neutrophil activation. Among 64,
mostly novel, regulatory genes predicted to influence these changes in gene expression, Irf5 was shown to be important for
optimal secretion of IL-10, IP-10, MIP-1a, MIP-1b, and TNF-a by mouse neutrophils in vitro after stimulation through TLR9.
This data-set and its analysis using the ImmGen regulatory model provide a basis for additional hypothesis-based research
on the importance of changes in gene expression in neutrophils in different conditions.
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Bordeaux to P.D. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: pmonach@bu.edu

" Membership of the ImmGen Consortium is provided in the Acknowledgments.

Introduction

The Immunological Genome Project (ImmGen) is a consortium

of immunologists and computational biologists who aim to

produce a comprehensive description of gene expression and a

model of its regulation in the immune system of the mouse [1–11].

In this context, we analyzed gene expression in neutrophils, in

order to determine gene expression patterns that distinguish

neutrophils from other leukocytes, compare expression patterns

among neutrophils activated by different stimuli in vivo, and infer

regulators of gene expression during neutrophil activation using

the ImmGen regulatory model.

Neutrophils are highly differentiated cells of the myeloid lineage

and are produced in large numbers in the bone marrow. They are

then released into the circulation, from which they extravasate in

response to a variety of inflammatory stimuli. Neutrophils are

specialized for defense against bacterial infection and are essential

for host survival in a normal environment. However, ‘‘acute’’

neutrophilic inflammation is also characteristic of diverse non-

infectious disease states such as inflammatory arthritis, neutro-

philic dermatoses, and vascultis.

Unstimulated neutrophils are short-lived, and many of the best-

known functions of activated neutrophils involve pre-formed

mediators. However, over the past 25 years it has become clear

that activated neutrophils have prolonged survival, that they

undergo prominent changes in gene expression, and that they

synthesize and secrete proteins [12–15], indicating that studies of

gene expression are biologically relevant. Gene expression

profiling of neutrophils has been reported in multiple studies,

mostly for human cells, sometimes ex vivo comparing disease

states [16–19] but more often in vitro after stimulation with

lipopolysaccharide, GM-CSF, or bacteria [19–24]. In all of these

studies, numerous changes in gene expression were seen with
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neutrophil activation. Two findings noted in multiple studies have

been up-regulation of anti-apoptotic genes [17,18,23,24] and

genes for pro-inflammatory cytokines and chemokines

[17,18,20,21,24]. Some authors have focused on other changes,

such as in genes for transcription factors [22] or related to antigen

presentation [19], and these papers have also reported differences

among different stimuli in vitro [19,22]. We are aware of only one

study of gene expression in mouse neutrophils, in which

neutrophils activated in vivo by thioglycollate-induced peritonitis

were found to express many genes previously thought to be specific

to macrophages [25]. Mouse neutrophils activated in vivo by

different stimuli have not been compared to each other, nor to

non-activated neutrophils.

The importance of particular regulators of gene expression has

been established most conclusively for the differentiation of

neutrophils; for example, PU.1, CEBP/a, CEBP/e, and Gfi-1

are essential for normal granulopoiesis [26–29]. During neutrophil

activation, studied using human cells in vitro, evidence for

involvement of STAT proteins, NFkB isoforms (specifically the

canonical pathway involving NFkB1/p50 and RelA), and CEBP/

a has been obtained [26,30].

In the current study, we obtained gene expression profiles from

unstimulated mouse neutrophils (bone marrow and blood) and

three disease states that involve extravasation and activation, in

order to identify genes that distinguish neutrophils from other

leukocytes, to identify changes in gene expression that are shared

among activated states, and to identify changes characteristic of a

particular stimulus. Uric acid (UA) crystals elicit inflammation in

the peritoneal cavity–a model for the human arthritic disease

gout–and initiate pro-inflammatory signals in leukocytes through

the NLRP3 inflammasome [31]. Thioglycollate broth (TG) elicits

neutrophilic and then macrophage inflammation in the peritoneal

cavity; this technique has been used for many years to study

neutrophils and especially macrophages, but no specific human

disease is modeled. The mechanism is undefined, but since yeast

extract is a component of the broth, signaling through multiple

innate-immune receptors is likely. Autoantibodies to glucose-6-

phosphate isomerase produce inflammatory arthritis with similar-

ities to the human disease rheumatoid arthritis. Neutrophils

infiltrate the synovial fluid (SF), through deposition of immune

complexes in the joint [32,33]. In all of these models, neutrophils

circulating in the blood are the precursors of the cells accumu-

lating in the inflamed sites and are an appropriate standard for

comparison. The fact that this project was part of ImmGen

allowed an additional and novel analysis: we used the ImmGen

regulatory model [10] to infer the importance of many transcrip-

tion factors in neutrophil activation.

Methods

Ethics Statement
All experiments using mice were conducted under protocols

approved by the HMA Standing Committee on Animals of

Harvard Medical School or the Institutional Animal Care and Use

Committee of the Boston University Medical Campus.

Mice
For experiments involving gene expression profiling, male

C57BL/6 mice were purchased from the Jackson Laboratory at

five weeks of age and maintained at Harvard Medical School for

one week before use in experiments.

For experiments using neutrophils in vitro, C57BL/6 wild-type

mice were purchased from the Jackson Laboratory. Irf52/2 mice

(backcrossed 8 generations to C57BL/6) were provided by Dr. T.

Taniguchi (University of Tokyo, Tokyo, Japan) and Dr. T. Mak

(University of Toronto, Toronto, Canada) [34] and then

backcrossed a further 7 generations to C57BL/6 mice from the

Jackson Laboratory. Mice were maintained at the Boston

University School of Medicine Laboratory Animal Sciences

Center and used under IACUC-approved protocol 14794.

Inflammatory Stimuli and Collection of Cells
Arthritis was induced using serum from K/BxN mice, 0.15 ml

intraperitoneally (i.p.) on day 0 and day 2. Synovial fluid was

collected on day 7 by puncture of the medial or lateral ankle with a

21-gauge needle, recovery of the fluid with a micropipet, and

immediate dilution in cold DMEM (without Phenol Red)

containing 5% FBS, 0.1% sodium azide (DMEM/FBS/azide),

and 20 mM EDTA. Peritonitis was induced by i.p. injection of

1 ml autoclaved 3% thioglycollate FTG medium (Sigma), or

0.1 ml of 10% uric acid (Sigma, non-crystalline) in 0.8% NaCl

that had been sonicated and stored at RT overnight to allow

crystals to form [35]. Peritoneal exudate cells were recovered

18 hr later by lavage with 9 ml cold DMEM/FBS/azide. Blood

was collected by cardiac puncture and immediately diluted into

cold DMEM/FBS/azide also containing 20 mM EDTA. Bone

marrow cells from femurs were extruded directly into cold

DMEM/FBS/azide.

Purification of Neutrophils, Flow Cytometry
In most cases, samples from two mice were pooled before

purification of neutrophils for gene expression studies. The

standard ImmGen protocol for staining and fluorescence activated

cell sorting (FACS) was used (www.immgen.org/Protocols/

ImmGen%20Cell%20prep%20and%20sorting%20SOP.pdf), in-

cluding a maximum of 2 hours between mouse sacrifice and

staining. RBC were removed by hypotonic lysis with ACK

medium for 3 min on ice for most samples. Removal of RBC from

blood samples required two treatments of 5–10 min each. The

remaining cells were stained with PE-conjugated anti-CD11b

(clone M1/70, eBioscience) and APC-Cy7-conjugated anti-Ly6G

(clone 1A8, BD Pharmingen) in DMEM/FBS/azide for 10 min,

and neutrophils were recovered by FACS (FACS Aria, Becton

Dickinson) based on high side-scatter, bright staining for Ly6G

and CD11b, and exclusion of doublets. Two cycles of FACS were

performed, and purity of the sorted cells was at least 99% after the

second sort. Fifty thousand cells were sorted directly into TRIzol

Reagent (Invitrogen) for recovery of RNA during the second sort.

Common myeloid precursors (CMP) were sorted as Lin2IL7R-

Sca12cKit+FcgRluCD34+ cells, and granulocyte/monocyte pre-

cursors (GMP) as Lin2IL7R-Sca12cKit+FcgRhiCD34+ cells. For

purification of other leukocyte populations, see www.immgen.org.

For purification of splenic leukocyte populations for gene

expression analysis by RNA-Seq, see www.immgen.org/

Protocols/11cells.pdf.

For purification of neutrophils for subsequent stimulation

in vitro, see below.

RNA Processing, Microarrays, and Data Processing
RNA purity was determined using an Agilent 2100 bioanalyzer,

and all samples had RNA Integrity (RIN) scores greater than 7 (on

a scale of 0–10), the standard for inclusion in ImmGen. Per

standard ImmGen protocol (www.immgen.org/Protocols/
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Total%20RNA%20Extraction%20with%20Trizol.pdf), RNA was

amplified and hybridized to the Affymetrix MoGene 1.0 ST array

with the GeneChip Whole Transcript (WT) Sense Target Labeling

Assay per the manufacturer’s instructions. Raw data were

normalized using the GenePattern module ExpressionFileCreator

and its robust multichip average algorithm. Isolation of polyA+
RNA, RNA-Seq, and analysis of RNA-Seq data were performed

as described in www.immgen.com/Protocols/11cells.pdf.

Gene Expression Omnibus accession number: GSE15907.

Filtering of Genes to be Analyzed
For comparison of neutrophils to non-neutrophil leukocytes,

data from all probes on the array were used. Analyses comparing

neutrophil populations to each other or inferring regulatory genes

were limited to genes with mean expression .120 after

normalization in at least one neutrophil population, since this

level of expression on the 1.0 ST array has been associated with a

95% chance of protein expression and is being routinely used as

the cut-off value in ImmGen studies [36]. Significant variation

across neutrophil populations (ANOVA P,0.01), fold-difference

$2 in at least one pair-wise comparison of populations, and

acceptable variation within replicates (within-group coefficient of

variation (CV) ,0.5 across neutrophil populations) were also used

as filters for these analyses.

Analysis of Gene Ontology Categories and Functional
Pathways

The distribution of genes into Gene Ontology (GO) categories

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways was analyzed using DAVID (http://david.abcc.ncifcrf.

gov/) and its default Benjamini-Hochberg adjustment for multiple

comparisons, with adjusted Q,0.05 regarded as significant. The

Functional Annotation Clustering tool in DAVID was used to

identify redundant GO categories and KEGG pathways.

Lists of genes analyzed using DAVID included genes over-

expressed or under-expressed in all neutrophil populations

compared to all non-neutrophil populations; genes up- or down-

regulated in SF, TG, or UA neutrophils relative to blood

neutrophils (2-fold or 1.5-fold); genes up- or down-regulated at

least 2-fold in SF, TG, or UA compared to all other neutrophil

populations; and genes implicated in a shared regulatory network

(see below). The numbers of genes in different GO categories or

KEGG pathways that were up- or down-regulated in these three

activating conditions were analyzed by Fisher’s exact test or chi-

square test in pairwise comparisons.

Categories and pathways of interest were studied in more detail.

Among genes down-regulated in neutrophils compared to non-

neutrophils, expression of all genes in the significantly enriched

GO categories (www.geneontology.org) was analyzed. For com-

parison of activated neutrophil populations, compilation of

significant GO terms and KEGG pathways was supplemented

by manual examination of gene lists and refinement of pathways

after consultation of the NCBI Gene annotations (ncbi.nlm.nih.

gov/gene) and the literature via PubMed. For analysis of

expression data for genes on the most of the resulting lists, filters

for expression (.120), significance (ANOVA Q,0.05 after

adjustment for multiple comparisons), and fold change (.2 in a

pairwise comparison, in most cases) were retained, but the filter for

CV was removed due to the small numbers of genes being

analyzed simultaneously and incorporation of such variation into

analysis by ANOVA. For the list of genes in a pathway implicated

only after analysis of likely regulatory genes (see below), the fold-

change criterion was relaxed (.1.5) and the ANOVA criterion

removed, with genes not meeting the more strict criteria being

noted. Graphics were created using the Pathway Designer function

of Ingenuity Systems (www.ingenuity.com).

Visualization of Differences in Gene Expression
Global gene expression patterns in leukocyte populations were

compared by principal components analysis (PCA) using the

‘Population PCA’ tool (http://cbdm.hms.harvard.edu/

LabMembersPges/SD.html). Heat maps were produced using

GenePattern module HeatMapImage. For comparison of expres-

sion among neutrophil populations (blood, SF, UA, and TG),

expression was log-transformed and mean-centered across the 4

populations for each gene. The gradient was set to indicate an 8-

fold difference between lowest (dark blue) and highest (dark red)

expression, so as to allow visualization of 2-fold differences and

comparison among genes; for a few genes, the differences were

larger than 8-fold and are not fully appreciable.

Analysis Using the ImmGen Regulatory Model
Starting with the 1283 genes that had passed initial filters for

expression level and variation between and within groups as

above, expression data from individual replicates of neutrophils

purified from blood, SF, TG or UA were used to place genes into

clusters using ExpressCluster (http://cbdm.hms.harvard.edu/

LabMembersPges/SD/downloads/ExpressCluster_v1.3.pdf): K-

means clustering with k = 32 clusters that converged after 13

iterations, using Euclidean distance as the distance metric with

mean-centered signal transformation. Correlation coefficients

were calculated for each cluster. Clusters showing similar patterns

but differing in magnitude were merged for subsequent analyses

(resulting in 25 clusters), and re-calculation of correlation

coefficients confirmed that such merging was appropriate, since

coefficients dropped little if at all (maximum drop 0.03). To assess

the statistical significance of the clustering process, normalized

expression values for all genes were randomized for each sample,

and that simulated data-set was analyzed by ExpressCluster and

correlation coefficients calculated in the same way.

In the ImmGen regulatory model, each gene is assigned to one

coarse (n = 81) and one fine (n = 334) module based on correlated

expression across all populations; each module is associated with

multiple regulators, with associations assigned weights based on

the beta-coefficients from a multiple regression equation unique to

each module [10]. Thus, each target gene in a dataset generates

multiple regulator-target pairs, and weights can be compared only

within modules, not between them. Some regulators are associated

with few modules, some with many, so the maximum number of

regulator-target pairs is highly variable among regulators. Since

there is no objectively ‘‘best’’ way to infer regulator importance

using this framework, we performed two analyses in parallel: i)

restricting the analysis to coarse modules with significantly

increased numbers of genes, then compiling the regulators of

those modules; and ii) for each regulator in light of its assignment

to coarse modules, comparing the number of regulator-target pairs

generated by a list of genes to the maximum number of regulator-

target pairs in the model.

Distribution of genes into the 81 coarse modules was compared

to a random distribution generated by simulation using custom

PERL script that measured total bin counts after 10,000 sets of

random distributions of X numbers into 81 bins with different sizes

determined by the number of target genes in each of the coarse

modules, where X is the number of unique genes in a particular

cluster group that was a target gene member of one of the coarse

modules. The 25 clusters were pooled into 3 groups (11 clusters of

up-regulated genes, 9 clusters of down-regulated genes, and 5 with

more complex patterns) in order to obtain acceptable statistical
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power. Q,0.05 after adjustment for the false discovery rate [37]

was regarded as significant. Regulators associated with these

modules were identified.

Analyses for enrichment of regulator-target pairs was also

performed using these 3 pools of clusters. Over-representation of

regulator-target pairs was determined by chi-square test with

adjustment for the false discovery rate, with Q,0.01 chosen as the

cut-off value in order to enrich for the most highly over-represented

regulators [37]. The list of regulators chosen for further analysis

included those that were over-represented in one of the 3 pools of

clusters and also had been associated with a significantly enriched

coarse module as above. The genes in each of the 25 individual

clusters were then analyzed similarly for enrichment of regulator-

target pairs, to create a matrix of P-values for each regulator with

each cluster of expressed genes. This matrix was subjected to

hierarchical clustering of both rows (regulators) and columns (clusters)

to identify related regulators and related gene clusters. The

HeatMapImage module in GenePattern was used for visualization.

Neutrophil Stimulation in vitro
Neutrophils were first enriched from bone marrow on a 62.5%

Percoll column [38], then stained with PE-conjugated anti-CD11b

(clone M1/70, eBioscience), PerCP-Cy5.5-conjugated anti-Gr1

(i.e., anti-Ly6G and/or Ly6C, clone RB6-8C5, BD Pharmingen),

and APC-conjugated anti-F4/80 (clone BM8, BioLegend). In one

experiment, cells were stained with PE-conjugated anti-CD11b

and FITC-conjugated anti-Ly6G (clone 1A8, BioLegend). Purified

neutrophils (CD11b+Gr1hiF4/802 or CD11b+Ly6Ghi) were sorted

by FACS on a MoFlo instrument (Beckman Coulter). The

neutrophil population was .98% pure as assessed by Wright-

Giemsa stain of cytospun samples.

Neutrophils were resuspended in RPMI-1640 medium supple-

mented with 10% fetal bovine serum, 2 mM L-glutamine, 100 U/

ml penicillin and 100 mg/ml streptomycin (complete medium) and

seeded at 36105 cells/well in 96-well round-bottom plates. They

were then incubated with the following TLR ligands for 16 hours:

the TLR2 ligand Pam3Cys-Ser-Lys4 (Pam3Cys) (100 ng/ml), the

TLR3 ligand poly(deoxyinosinic-deoxycytidylic acid) (poly(I:C))

(10 ug/ml), the TLR4 ligand LPS (100 ng/ml), and the TLR9

ligand CpG-B (oligodeoxynucleotide (ODN) 1826) (1 ug/ml) (all

from InvivoGen). Following incubation, the supernatants were

collected and concentrations of selected cytokines and chemokines

(IL-1b, IL-10, IP-10, KC, G-CSF, MIP-1a, MIP-1b, MIP-2, and

TNF-a) in the supernatants were measured by Luminex (National

Mouse Metabolic Phenotyping Center at the University of

Massachusetts Medical Center, using reagents from Millipore).

Results and Discussion

Neutrophils were purified by FACS, on the basis of forward-

scatter/side-scatter pattern and staining for Ly6G and CD11b [39],

from bone marrow, blood, and three inflammatory conditions: SF 7

days after induction of arthritis using autoantibodies, peritonitis 18

hours after injection of TG, and peritonitis 18 hours after injection

of UA (Fig. 1A). Cell purification was performed according to

ImmGen standard operating protocols, from 5-week-old C57BL/6J

male mice. Microarray gene expression profiles were generated on

triplicate samples using ImmGen standard pipelines for data

generation, processing, and quality control.

Gene expression in neutrophil populations with
comparison to other leukocytes

Based on analysis of global gene expression patterns by PCA,

the 5 neutrophil populations clustered distinctly from all other

leukocyte populations in ImmGen (Fig. 1B). This unique

expression pattern was driven both by over-expression and

under-expression of genes in neutrophils compared to the other

198 leukocyte populations: e.g., mean expression of 457 probes

was at least 4-fold higher in neutrophils than non-neutrophils, and

mean expression of 1179 probes was at least 4-fold lower. The

total number of probes with absolute expression .120 (used as a

cut-off because it is highly predictive of translation into detectable

protein) [36] was lower in neutrophils (range 9166–9437) than in

other leukocytes (mean 10198, range 9806–11342, P,0.0001

comparing neutrophils to any other type of leukocyte).

Genes with expression most specific to neutrophils were

identified in two ways: i) genes reliably expressed (absolute

expression .120) in all 5 neutrophil populations but in none of

the 198 non-neutrophil populations, and ii) minimum expression

among the 5 neutrophil populations at least 2-fold higher than the

maximum expression in any other leukocyte. Thirteen genes met

the first criterion, and 23 met the second, with 5 meeting both

criteria (Table 1). These 31 genes were not enriched in any Gene

Ontology (GO) term, and no functional theme was evident by

inspection. Data obtained from splenic leukocyte populations

using RNA-Seq, a different method to quantify mRNA, confirmed

neutrophil-specific expression of these genes (Table S1). Eosin-

ophils have not yet been profiled in ImmGen, but published data

using the same microarray platform [40] indicate that 10 of these

31 genes, including only 3 of the 13 genes expressed in all

neutrophil populations but no other leukocytes in ImmGen, are

definitely expressed in eosinophils (Table 1).

Two of the 31 genes (Csf3r and Cxcr2) are well-known to be

important in neutrophil biology and to be relatively but not

completely specific to neutrophils. Four other genes (Chi3l1,
Clec5a, Mgam, and Sgms2) have been studied in neutrophils but

also in other leukocytes [41–46]. The remaining 25 genes have not

been specifically studied in neutrophils; expression of 12 of them

has been reported to be relatively specific to neutrophils compared

to other leukocytes in an analysis of the BioGPS database [47], but

the other 13 did not appear in that signature (see Table 1).

Considering specificity beyond the hematopoietic system, 7 of

the 12 previously described and 11 of the 13 novel genes have

been reported to be expressed in at least one non-hematopoietic

cell type. Expression data were surveyed via the BioGPS website

(biogps.org) for the remaining 7 genes for which there was no

literature on expression, leading to the conclusion that Stfa2l1 and

Mrgpr2a and b (genes of unknown function) are particularly likely

to be specific to neutrophils. In our data-set, these genes were not

expressed in myeloid precursors, were highly expressed in mature

bone-marrow neutrophils, and continued to be expressed during

neutrophil circulation and activation. Stfa2l1 was not expressed

significantly in any non-neutrophil population, and the minimum

expression in neutrophils was 12-fold higher than the maximum

expression in non-neutrophil leukocytes (Table 1). In the

MOE430 Gene Atlas data-set (inspected on biogps.org), Stfa2l1
was expressed in mature granulocytes and bone marrow, but

otherwise only in umbilical cord at a low level. Mrgpra2a and b
were expressed at low levels in 3–4 non-neutrophil populations in

our data-set, with minimum neutrophil expression 3-fold higher

than maximum non-neutrophil expression; in the MOE430 data-

set, expression was high in mature granulocytes and bone marrow,

but otherwise only seen in the dorsal root ganglia.

Despite the unclear functional significance, these results are

consistent with the literature. As above, 16/31 genes (including

Stfa2l1 and Mrgpr2a and b) were among the 206 genes assigned

to neutrophil/granulocyte-oriented clusters in analyses of the

BioGPS dataset [47]. In turn, 155 of those 206 genes could be
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assessed in our data-set; the great majority were highly expressed

in neutrophils, particularly in unstimulated cells, but some

declined in activated cells and many were also expressed in other

leukocytes (File S1).

In contrast, genes encoding components of neutrophil granules

had two different patterns of expression, consistent with the

literature [48–50]: expression of primary (azurophilic) granule

components was virtually limited to granulopoiesis (granulocyte-

monocyte precursor, GMP), and expression of components of

secondary (specific), tertiary, or secretory granules peaked at the

mature stage in the bone marrow and declined among circulating

and activated cells (Fig. 1C). In agreement with these findings,

published analyses of BioGPS and other databases have also

incorporated a few genes for secondary/tertiary granule proteins

(Fpr1, Lcn2, Ltf, Orm1, Mmp8), but no genes for primary granule

proteins, into granulocyte signatures [47,51]. Thus, the canonical

proteins of neutrophils do not serve as an ideal genetic signature

for mature neutrophils, which has implications regarding strategies

for identifying evidence of neutrophil infiltration or contamination

in studies of complex tissues. The highly neutrophil-specific genes

we have identified, such as Stfa2l1 and Mrgpra2a and b, are good

candidates for development of Cre-expressing mice with greater

specificity for neutrophils than the best currently-available model

based on human MRP8 [52] (equivalent to mouse S100a8, which

showed good specificity in our studies as well but did not meet our

strict criteria, see immgen.org). The genes of unknown function in

Table 1 are also good candidates for study related to unique

neutrophil actions such as NETosis.

The genes most specifically under-expressed in neutrophils were

identified in an analogous way as with over-expressed genes. Sixty-

five probes had minimum expression in non-neutrophils more

than 2-fold greater than maximum expression in neutrophils, 98

probes were expressed in all 198 non-neutrophil populations but in

none of the 5 neutrophil populations, and 17 probes met both

criteria, leaving 146 probes associated with 120 genes. These genes

were significantly enriched in GO categories related to translation,

e.g., rRNA metabolic process, rNMP biosynthesis, tRNA

aminoacylation, nucleocytoplasmic transport (all Q,0.05 after

Benjamini-Hochberg adjustment), and related/redundant catego-

ries. Almost all of the remaining genes (i.e., those that did not meet

the strict criteria for being specifically under-expressed) in the first

3 of these categories were also expressed at lower levels in

neutrophils than non-neutrophils (Fig. 1D). These results are

consistent with the previously-described scarcity of ribosomes in

neutrophils [53] and probably reflect a conservation of energy for

other processes during a short lifespan. Although limited

availability of ribosomes and/or tRNAs is probably the reason

that gene expression in neutrophils does not always correlate with

protein production [12,20], it remains unclear whether there is a

mechanism for prioritization for translation above and beyond

merely the relative abundance of different mRNAs [12].

Comparison of neutrophils activated by different stimuli
As described in more detail in Text S1 and Figure S1, changes

in gene expression in SF, TG, and UA neutrophils were compared

using plots comparing fold-changes relative to blood neutrophils,

Venn diagrams, and statistical analysis of distribution into GO

categories. To summarize, the majority of differences were

quantitative rather than qualitative. In particular, correlation

was high (r = 0.79) between TG and UA, but changes in TG were

of greater magnitude. The lowest correlation was between SF and

UA (r = 0.55), and very few changes in gene expression were seen

in both SF and UA but not TG. Down-regulation of individual

genes was more likely to be shared among all 3 conditions than

was up-regulation.

Because these analyses had low power to detect changes in small

numbers of related genes, we also identified every gene with

expression in TG, SF, or UA that was at least 2-fold higher than in

either of the other conditions and in blood. Seventy-nine genes

were relatively specific for TG, 49 for SF, and 13 for UA (Table
S2). Inspection of these lists revealed several groups of genes with

shared functions. TG neutrophils up-regulated NFkB subunits and

regulators, enzymes involved in gluthathione metabolism and

other antioxidants, and signaling molecules in pathways for

responding to microbial products. SF neutrophils up-regulated

MHC class II genes, the C1q component of complement, all 3

members of the Nr4a nuclear hormone receptor subgroup (Nr4a1,

2, and 3), and molecules related to the uptake and metabolism of

lipoproteins. UA neutrophils up-regulated two receptors for

leukotrienes (Cysltr1 and Ltb4r1). Genes specifically down-

regulated in TG (n = 3), SF (n = 42), or UA (n = 9) did not contain

any shared functions that were obvious on inspection, nor by

analysis using DAVID.

We proceeded to analyze and interpret the functions of genes

up-regulated or down-regulated in activated neutrophils, whether

shared among activating conditions or relatively specific to one

condition.

Functions of genes up-regulated in activated neutrophils
Most of the GO biological processes in which genes up-

regulated in activated neutrophils were enriched were very broad

and not surprising: apoptosis, regulation of apoptosis, immune

system development, cellular ion homeostasis, inflammatory

response, regulation of leukocyte activation, regulation of cytokine

production, response to oxidative stress, positive regulation of

catalytic activity, phosphorus metabolic process, regulation of

small GTPase mediated signal transduction, protein homooligo-

Figure 1. Isolation of neutrophils and characterization of gene expression patterns. A. Neutrophils were isolated from bone marrow (BM)
and blood (BL) of untreated mice, from the peritoneal cavity of mice administered thioglycollate (TG) or uric acid (UA) intraperitoneally, and from the
synovial fluid (SF) of mice with autoantibody-induced arthritis, on the basis of scatter patterns (which differed among conditions, left panels) and
staining for CD11b and Ly6G (right panels). The population in the upper left corner of the TG plot did not express CD11b or Ly6G. B. Comparison of
global gene expression patterns in neutrophils (labeled) to all of the other populations in ImmGen, using axes determined by principal components
analysis (PCA). Populations in red on the right side of the diagram represent stromal cell populations; other colors represent various lymphoid and
myeloid populations. To convert ImmGen nomenclature to the abbreviations used in this paper: Thio.PC = TG; UrAc.PC = UA; Arth.SynF = SF;
GN.Bl = BL; GN.BM = BM = bone-marrow neutrophils from normal mice; Arth.BM = bone-marrow neutrophils from arthritic mice, note similarity to
GN.BM. C. Expression of genes for components of neutrophil primary granules (top), secondary granules (middle), and 15 genes showing greater
expression in neutrophils than non-neutrophils in ImmGen [mean expression among 5 neutrophil populations (BM, BL, SF, UA, and TG) being greater
than 4 times the maximum expression among 198 non-neutrophil populations](bottom), during neutrophil development and activation.
CMP = common myeloid precursor; GMP = granulocyte/monocyte precursor. Note that expression patterns in the ‘‘neutrophil-specific’’ genes as
identified in this study resembled those of secondary but not primary granule components. D. Expression of groups of genes related to translation
(per Gene Ontology = GO) in neutrophils (blue) and other leukocytes (red). Each bar represents mean expression among 5 neutrophil or 198 non-
neutrophil populations, and error bars show standard errors.
doi:10.1371/journal.pone.0108553.g001
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merization, and negative regulation of cell proliferation. We

focused further analysis on the 10 significant GO terms with 50 or

fewer genes. These more-specific terms still often shared genes,

which allowed functions of interest to be summarized as: i)

regulation of apoptosis, ii) pro-inflammatory signaling through

NFkB including pathways for responding to microbial products,

iii) glutathione metabolism, and iv) antigen processing and

presentation. Analysis for enrichment in KEGG pathways

corroborated the first 3 of these functions and also indicated that

genes for lysosome components, not surprisingly, were significantly

up-regulated in all three activated populations. Inspection of genes

specifically up-regulated in one activating condition (Table S2)

had also indicated that the latter 3 of these functions were of

interest, as were metabolism of lipoproteins, Nr4a-family nuclear

receptors, and receptors for leukotrienes.

Uptake and metabolism of modified lipoprotein. Up-

regulation of multiple endocytic receptors for VLDL (Lrp1) and

oxidized LDL (Cxcl16, Olr1, Cd36) was most prominent in SF

neutrophils, whereas induction of lysosomal lipase (Lipa) and

signaling receptors for lysophosphatidylcholine (Gpr132) and free

fatty acids (Gpr84) was most characteristic of TG neutrophils

(Fig. 2A). Uptake of modified lipoproteins, breakdown of

triglycerides and cholesterol esters, and export of cholesterol are

all well-described in macrophages, and dysfunction of this system

is important in foam cell formation in atherosclerosis [54,55].

Similar mechanisms are not known to operate in neutrophils. No

previous studies have commented on up-regulation of genes

related to lipoprotein metabolism, but corroboration of this finding

at the level of gene expression is provided by review of data from

human neutrophils stimulated in vitro: transcripts for CD36,
CXCL16, GPR132, LRP1, OLR1, and additionally MSR1 were

up-regulated by LPS and/or GM-CSF [19].

Nr4a family members. Nr4a1 (Nur77), Nr4a2 (Nurr1), and

Nr4a3 (NOR-1) are ligand-independent transcription factors in

the nuclear hormone receptor superfamily whose expression is

induced rapidly in a variety of cell types following a wide range of

inflammatory or non-inflammatory stimuli [56,57]. Expression of

Nr4a family members is induced by inflammatory cytokines or

oxidized lipids in murine macrophages [58], and by live bacteria

or to a lesser extent LPS in murine mast cells [59]. Expression in

neutrophils at the protein level has not been described, but all

three NR4A family members were among the many transcription

factors noted to have significant changes in gene expression in one

study of human neutrophils, and these changes differed among the

three stimuli used in vitro [22]. In another study, NR4A3 was

induced by either LPS or GM-CSF/IFNc in vitro [19]. In our

experiments, Nr4a2 and Nr4a3 were up-regulated only in SF

neutrophils, and Nr4a1 was up-regulated more in SF than TG

neutrophils (Fig. 2B). These 3 genes were among the 49 genes

with at least 2-fold higher expression in SF than in blood, TG, or

UA neutrophils. Nr4a proteins have been shown to both induce

and suppress expression of inflammatory genes [56]. Nr4a proteins

play important roles in stimulating lipolysis and utilization of

glucose [56], which is intriguing in light of the up-regulation of

genes related to uptake and metabolism of lipids particularly in SF

neutrophils.

Glutathione metabolism. Also notable was differential

regulation of genes related to the synthesis, use, and recycling of

glutathione, particularly in TG neutrophils (Fig. 2C). Increased

capacity to synthesize glutathione is suggested by up-regulation of

the genes for the rate-limiting enzyme, glutamate-cysteine ligase

(Gclc, Gclm), extracellular enzymes that cleave plasma glutathione

to provide a source of cyst(e)ine for cellular use (Ggt1, Ggt5), and

the major transporter for cyst(e)ine (Slc7a11) [60]. In contrast,

expression of several genes related to the oxidation-reduction cycle

of glutathione and NADP (G6pd2, G6pdx, Gpx1, Idh1) was down-

regulated in SF neutrophils. Glutathione is known to be important

in multiple facets of neutrophil biology, e.g., production of

cysteinyl-leukotrienes [61] and a range of activities dependent on

microtubule assembly, such as chemotaxis, degranulation, and

phagocytosis [62], but the details of regulation of glutathione

synthesis and use have not been studied intensively in neutrophils.

Interpretation of our data as a response to oxygen stress is

supported by the finding that expression of genes for five other

anti-oxidant enzymes (Cat, Prdx1, Prdx6, Sod2, and Txnrd1) was

also increased specifically in TG neutrophils (Fig. 2C).

Arachidonic acid metabolites. Changes in genes related to

arachidonic acid metabolites suggested increased synthesis of

prostaglandins (upregulation of Ptgs1/Cox1 and Ptgs2/Cox2) and

decreased synthesis of leukotrienes (upregulation of Dpep2 and

Ptgr1, downregulation of Mgst2, Ggt5, and Lta4h). Particularly

notable was upregulation of Ptgs1/Cox1 and two leukotriene

receptors (Cysltr1 and Ltb4r1) specifically by UA (Fig. 2D), an

expression pattern that was uncommon in the dataset overall.

Neutrophils are known to produce both leukotrienes and

prostaglandins in response to uric acid [63,64], immune complexes

[65], or microbes [66,67]. Our data suggest that this pathway may

be upregulated more by UA in the peritoneal cavity than by TG in

the peritoneal cavity or by immune complexes in SF. In that

setting, it is intriguing to note that in humans, gout (caused by UA

crystals) appears to respond better to inhibitors of cyclooxygenases

(the products of the COX/PTGS genes) than do other forms of

inflammatory arthritis, but with the caveat that in mice, COX-1

inhibitors are effective in preventing arthritis using the same model

used in this study [68].

Antigen processing and presentation. Genes for MHC

class II molecules (H2-Aa, H2-Ab1, H2-Eb1) were significantly

up-regulated only in SF neutrophils, and invariant chain (Cd74)

was up-regulated in SF and TG neutrophils (Fig. 2E). Among co-

stimulatory molecules, expression of Cd80 appeared to be up-

regulated in all 3 activated neutrophil populations. Genes for

several proteases involved in production of peptide antigens (Ctsb,
Ctsl, Ctss, Lgmn) and for a reducing agent important in antigen

processing (Ifi30/Gilt) were also up-regulated particularly in SF

neutrophils (Fig. 2E). Induction of genes related to antigen

presentation has been noted to differ with different forms of

activation of human neutrophils in vitro [19]. Mouse neutrophils

co-incubated with T cells in vitro express MHC class II, CD80,

and CD86 proteins and can process and present exogenous

antigen to T cells [69]. In the same study, freshly isolated TG

neutrophils did not express MHC class II proteins, consistent with

our gene expression data. Thus, the conditions in SF may promote

antigen presentation by neutrophils more effectively than perito-

nitis induced by TG or UA, but this hypothesis requires

confirmation at the level of protein expression.

Apoptosis. Regulation of apoptosis in neutrophils has been a

subject of intensive study. Apoptosis is the normal, non-inflam-

matory mechanism by which unstimulated neutrophils die after a

short time in the circulation, and inhibition of apoptotic cell death

is one of the salient features of neutrophil activation [14,15,70,71].

Because of this literature, and because induction of anti-apoptotic

genes has been commented upon in multiple previous studies of

gene expression in activated neutrophils [17,18,23,24], and

because interpretation of gene expression patterns alone provides

little insight into the activity of apoptotic pathways, we will only

comment briefly on our data. Expression of several pro-apoptotic

receptors (Fas, Tnfrsf1b), Bcl-2 family members (Bcl2l11 = Bim;

Bax), and caspases (Casp8) was up-regulated, particularly in TG
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neutrophils (Fig. 2F). More striking was the up-regulation of anti-

apoptotic Bcl-2 family members (Bcl2l1 = Bcl-XL; Bcl2a1-
4 = A1) and other inhibitors (Cflar, Xiap), again predominantly

in TG neutrophils (Fig. 2F). Consistent with the literature, among

anti-apoptotic genes, Bcl2 was not expressed, but Mcl1, known to

be important in protection of neutrophils from apoptosis [70,71],

was expressed in all neutrophil populations at higher levels than in

most other leukocytes (mean 6405+/2826, versus 2649+/21182).

Finally, the up-regulation of the glutathione pathway and anti-

oxidant enzymes (see above) particularly in TG neutrophils can be

interpreted as an anti-apoptotic response [72].

NFkB and its proximal regulators. Genes encoding the

non-canonical NFkB subunits (Nfkb2 and Relb) were up-

regulated, as were genes encoding inhibitors of NFkB (Nfkbia, d,

and e) and a kinase that inactivates these inhibitors in the non-

canonical pathway (Ikbke, along with the regulatory subunit Ikbkg/
Nemo), particularly in cells elicited with TG (Fig. 2G). These

results suggest up-regulation of the non-canonical NFkB pathway.

Members of the canonical NFkB pathway are present in resting

human neutrophils, and activation of this pathway in neutrophils

activated by various stimuli has been described [30]. In the same

study, the non-canonical isoforms NFkB2/p52 and RelB were not

detected in resting cells, but it was not reported whether these

isoforms were searched for after activation [30]. Thus, it is not

clear that NFkB2/RelB involvement in activated neutrophils has

been ruled out even in the specific setting of human cells

stimulated in vitro, and increased expression of mRNA for one or

both of these isoforms in stimulated human neutrophils has been

found in multiple other studies [19–22]. Since much of the

regulation of NFkB activity is post-transcriptional, it is difficult to

draw conclusions on the basis of transcription patterns, other than

to say that use of the non-canonical pathway is plausible. For

example, McDonald et al. reported increased transcription of IkB-

a (Nfkbia) after neutrophil activation, as has been seen in multiple

other studies including this one [19,20,22], but noted that this

increase occurred in response to the degradation of IkB-a protein

[30]. Therefore, the change seen in mRNA for Nfkbia is

biologically relevant, but interpretation is not straightforward in

a system subject to feedback regulation.

Pathways for responding to microbial products. Signaling

pathways from pattern recognition receptors (PRRs) for microbial

products, including multiple Toll-like receptors (TLRs), NOD-like

receptors (NLRs), and inflammasomes, are known to operate in

neutrophils [73–75]. These pathways are also presumed or known

to be relevant to the three inflammatory conditions being studied:

autoantibody-induced arthritis is exacerbated by the TLR4 agonist

lipopolysaccharide (LPS) [76], uric acid crystals deliver inflamma-

tory signals via the NLRP-containing inflammasome [31], and

although the pro-inflammatory components of thioglycollate broth

have not been identified, the fact that it is a microbial extract makes

it highly likely that multiple microbial products are involved.

Components of the NLR and inflammasome pathways were

most prominently altered in TG neutrophils (Fig. 2H). Since both

stimulatory (Nod1, Birc3, Pycard/Asc, Hsp90) and inhibitory

(Tnfaip3/A20, Mefv/Pyrin) components were up-regulated, as

were both pro-inflammatory (NFkB pathway, as above) and pro-

apoptotic (Casp8) downstream effectors, the net biologic effects of

these changes are difficult to predict. In contrast, multiple

members of a pathway for sensing cytoplasmic DNA (Zbp1/Dai,
Tmem173/Mita, Ripk3/Rip3) were equally up-regulated in TG

and UA but not SF neutrophils. Changes in components of TLR

pathways were more complex, but up-regulation of Tlr4 and

Cd14 in multiple conditions, up-regulation of two components of

the MyD88-independent pathway downstream of Tlr4 (Traf3,
Tbk1) specifically in TG neutrophils, and down-regulation of the

MyD88-dependent pathway component Irak4 as well as a secreted

LPS-binding protein (Lbp) specifically in SF neutrophils suggested

that response to LPS is a particular object of differential regulation

under different stimulating conditions (Fig. 2H).

Signaling from Tlr4 and other TLRs proceeds not only to

NFkB and apoptotic pathways, but also to multiple interferon-

inducible regulatory factors (IRFs), which we will discuss in more

detail later since their importance was implicated by a separate

analysis.

Functions of genes down-regulated in activated
neutrophils

Although down-regulated genes were nearly as numerous as up-

regulated genes (see Fig. S1), they were not distributed as clearly

into functional groups. Only 3 GO terms, redundant and

consisting of multiple genes for histones, showed significant

enrichment in any activating condition. Further analysis of histone

genes revealed down-regulation of most genes in the replication-

dependent histone clusters [77], most strikingly the genes for H3

isoforms, in all 3 activated populations. However, expression of

replication-independent histone genes, particularly the ‘‘replace-

ment variant’’ H3.3 genes H3f3a and H3f3b, was unchanged

(Fig. 2I). Most likely, this finding simply reflects the fact that

neutrophils do not divide, but it is also possible that neutrophils

produce a unique complement of histones related to the

production of neutrophil extracellular traps (NETs) [78], the

anti-microbial properties of histones [79], or the toxic or

regulatory interactions of extracellular histones with other cells

[80,81].

Figure 2. Biological processes showing up-regulation or down-regulation of genes in activated neutrophils. (A–H). Heat maps show
mean expression in neutrophils from blood (BL), synovial fluid (SF), or peritonitis induced by uric acid (UA) or thioglycollate (TG). Mean expression
across all four conditions was placed at the center of the gradient (white) for each gene. Red indicates increased expression, and blue indicates
decreased expression. The full color gradient for each gene represents an 8-fold difference in expression. Lists of genes of interest were compiled
using the KEGG and Ingenuity databases as well as literature reviews; only genes showing at least 2-fold differences in expression comparing
conditions and with Q,0.05 by ANOVA are shown. In the pathway diagrams, up-regulated genes are shown in red, and down-regulated genes are
shown in green. A. Uptake and metabolism of lipoproteins. B. Nr4a-family transcription factors. C. Glutathione metabolism. D. Synthesis of and
response to leukotrienes and prostaglandins. E. Antigen processing and presentation via MHC class II. F. Genes related to apoptosis. G. NFkB
subunits and proximal regulators of NFkB. H. Genes related to signaling by innate immune receptors for microbial products. I. Expression of H3
histone genes (Hist1h3a, b, c, d, e, g, h, I, and Hist2h3b and 3c1) in neutrophil populations. Mean 6 SD of these 10 genes (black) declined after release
from bone marrow (BM) to blood (BL) and further after activation (SF, UA, TG). Mean 6 SD among 198 non-neutrophil populations is shown for
comparison. Although it is not apparent from this plot, the lowest expression among non-neutrophils exceeded the highest expression in UA or TG
neutrophils. Expression of genes for the ‘‘replacement’’ H3 histones, shown in red and blue, was maintained after neutrophil maturation and
activation, at levels similar to non-neutrophils.
doi:10.1371/journal.pone.0108553.g002
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Identification of regulatory genes likely to be important
in neutrophil activation

One of the major products of ImmGen is the definition of

modules of genes whose expression is correlated across leukocyte

populations, with subsequent assignment of probable regulatory

genes to each module [10]. In order to use this regulatory model to

predict which regulators are important in neutrophil activation

under different conditions, we first separated genes into 25 clusters

of 1–128 genes, defined by similar patterns of expression, using K-

means clustering of expression data from the individual replicates

of SF, TG, UA, and blood neutrophils (File S2). The validity of

this approach was supported by the fact that correlation

coefficients (comparing individual genes to the mean expression

profile for each cluster) were 0.86–0.94, whereas coefficients

generated using randomized expression data did not exceed 0.75

(data not shown).

To identify regulators of interest, genes within pools of clusters

(11 clusters of genes up-regulated versus blood, 9 clusters of down-

regulated genes, and 5 clusters of genes both up- and down-

regulated in different populations, to improve statistical power)

were analyzed for distribution into ImmGen modules and for

over-represented association with particular regulatory genes via

those modules (see Methods). Importantly, these modules and

assignment of regulatory genes were defined before any data from

activated neutrophil populations were included in the ImmGen

database (thus avoiding any bias), and the module definitions did

not change after incorporation of these data.

Sixty-four regulators were implicated using this approach. The

degree of over-representation of regulated genes in each of the 25

individual gene clusters was then determined (P-value of chi-

square test), and these data were used to create a matrix of P-

values for each regulator with each cluster. Hierarchical clustering

of this matrix was informative (Fig. 3A). Clusters of up- and

down-regulated genes clustered independently of each other, with

the 5 clusters of more complex patterns mixed in. Among clusters

of up-regulated genes, there was some clustering of patterns

characterized by particularly high expression in TG neutrophils,

or SF neutrophils, or both TG and UA but not SF neutrophils.

These results confirmed that implicated regulators were shared

across related expression patterns. Twenty-two regulators were

prominently associated with multiple clusters of up-regulated

genes and few if any other patterns; conversely, 5 regulators were

strongly associated primarily with down-regulated genes. Twenty

regulators were associated with many clusters with a variety of

patterns and thus were implicated in both up- and down-

regulation of genes. All of these 47 regulators appeared to be

associated with changes in gene expression across all 3 activating

conditions.

In contrast, the remaining 17 regulators were associated with

combinations of clusters that shared patterns specific to activating

conditions. Seven regulators were associated mostly with down-

regulated genes, but particularly for genes down-regulated in SF.

Ten regulators were associated with 5 clusters in which gene

expression was up-regulated in TG and UA, but not SF. Four of

these 5 clusters showed convincing association with the 10

regulators and were examined to see whether additional functional

pathways could be identified.

Interferon regulatory factors (IRFs) in activated
neutrophils

The list of 203 genes that were up-regulated in TG and UA but

not SF and that were implicated in a shared regulatory network

was analyzed using DAVID. After adjustment for multiple

comparisons, no GO category showed significant enrichment.

The chemokine signaling pathway in KEGG was significantly

enriched (Q = 0.03), but the 9 genes in this pathway included

several that are involved in many pathways (e.g., Akt3, Nfkb1,
Stat2), so this result was not particularly informative. In contrast,

inspection of the list showed multiple genes for oligoadenylate

synthases (Oas1a, Oas1g, Oas2, and Oasl2), and genes regulating

expression of Oas or co-regulated with Oas were found to have

similar patterns of expression (Fig. 3B). This result supports the

hypothesis that Irf9, probably induced via the type I interferon

receptor, plays a role in up-regulation of genes in TG and UA but

not SF neutrophils. Irf9 has not been implicated in neutrophil

function previously.

Two other IRFs were among the 64 regulators implicated in

neutrophil activation. Irf7 was in the same group of 10 regulators

as was Irf9, associated with up-regulation of genes by TG and UA

but not SF (see Fig. 3A). Several genes that we had identified as

being up-regulated in the TLR signaling and cytosolic DNA-

sensing pathways (see Fig. 2H) encode members of pathways that

activate Irf7 or induce Irf7, adding to the plausibility that Irf7

plays a role in neutrophils activated via the pathways of innate

immunity. Irf7 was expressed at similar levels in both unstimu-

lated and activated neutrophils, but Irf7 activity is also regulated

by post-translational modifications, including phosphorylation (see

Fig. 2H) [82].

Irf5, in contrast, was implicated in both up- and down-

regulation of genes in all 3 activating conditions (see Fig. 3A).

Expression of Irf5 mRNA was easily detectable in blood

neutrophils (mean 495) and increased significantly in SF (mean

909, P,0.0001), UA (mean 1204, P = 0.03), and TG (mean 1727,

P,0.0001) neutrophils. Irf5 has diverse functions that include the

induction of type I interferons and proinflammatory cytokines

following viral infection or downstream of Toll-like receptors

(TLRs) and nucleotide-binding oligomerization domain 2 (NOD2)

[34,83–87], and participation in apoptotic pathways induced by

viral infection, DNA damage, Fas-ligand, or tumor necrosis factor-

related apoptosis inducing ligand (TRAIL) [86,88,89]. However,

Irf5 has not previously been implicated in neutrophil biology. To

determine whether Irf5 plays a role in neutrophil function, we

isolated bone marrow neutrophils from IRF5-deficient (Irf52/2)

and wild-type (WT) mice and compared their secretion of

cytokines and chemokines in vitro in response to ligands for

different TLRs. Fifteen candidate cytokines/chemokines were

originally chosen on the basis of gene expression .75 in a

neutrophil population in ImmGen, inclusion in an Irf5-regulated

ImmGen module, inclusion in a cluster predicted to be regulated

by Irf5 in the current experiments, and/or known production by

human neutrophils in vitro [13]; secretion of IL-1a, IL-12(p40),

IL-15, MCP-1, M-CSF, and MIG was not detectable in our model

system in a preliminary experiment, so only 9 mediators were

studied further.

Irf52/2 neutrophils (CD11b+Gr1hiF4/802) secreted less IL-

10, IP-10, MIP-1a, MIP-1b, and TNF-a than WT neutrophils in

response to a TLR9 agonist (Fig. 3C). Analogous results with

lower absolute amounts were obtained in a single experiment

using FACS-sorted Ly6GhiCD11b+ neutrophils (data not shown).

In contrast, Irf52/2 and WT neutrophils secreted comparable

amounts of these proteins in response to TLR2 or TLR4 agonists,

demonstrating that the difference in TLR9-induced responses

between WT and Irf52/2 neutrophils was not due to a

generalized inability of the Irf52/2 neutrophils to respond

(Fig. 3C). Conversely, G-CSF was detectable after treatment with

the TLR9 agonist in this model system and did not differ between

Irf52/2 and WT neutrophils (data not shown), indicating that the
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Figure 3. Regulatory genes implicated in neutrophil activation, with further focus on IRF family members. A. Genes were placed into
25 clusters (1–128 genes each, shown as the column headings; A and B are used to identify clusters that have the same numbers of genes) based on
patterns of expression in individual samples of neutrophils from blood, SF, UA, and TG, as shown in the heatmap at the top. Clusters that clearly
represented up-regulated (U) or down-regulated (D) genes (relative to blood) were pooled and were used to generate a list of predicted regulatory
genes (rows) showing enrichment based on the ImmGen regulatory model. Association of each of the 64 regulators with each of the 25 gene clusters
was then quantified (P-value of chi-square test), and this matrix of P-values was subjected to hierarchical clustering in order to identify related
regulators (rows) and related gene clusters (columns). The lower heatmap indicates these P-values (darker = lower), and the dendrogram and colored
bars on the right show groups of regulators with similar patterns of association with various gene clusters. The presence of patterns in the top
heatmap (e.g., clustering of clusters characterized by up-regulation in TG, SF, or UA, or by down-regulation in SF), which shows normalized average
expression in the 4 neutrophil populations in each cluster, validates this method. The group of regulators shown in light blue was associated with
gene clusters indicated in bold; inspection of genes in these clusters led to implication of the type 1 interferon pathway and Irf9. B. Up-regulation of
genes induced by type 1 interferons via Irf9, in TG and/or UA but not SF neutrophils. The heatmap shows mean expression in blood (BL), SF, UA, and
TG neutrophils. Mean expression across all four conditions was placed at the center of the gradient (white) for each gene. The full color gradient for
each gene represents an 8-fold difference in expression. The list of genes of interest and the pathway diagram were generated using the KEGG and
Ingenuity databases. Only genes showing at least 1.5-fold differences in expression comparing conditions are shown in the heatmap. In the pathway
diagram, genes showing statistically significant (Q,0.05 by ANOVA) differences that varied 2-fold in at least one pairwise comparison of conditions
are shown in red, and genes showing fold differences of 1.5–2 and/or not meeting statistical significance are shown in pink. C. Irf5 is required for
production of several cytokines and chemokines by mouse neutrophils stimulated in vitro with the TLR9 ligand CpG-B, but not for production
induced by the TLR2 ligand Pam3Cys nor the TLR4 ligand LPS. The panels show the mean 6 SEM of 3 independent experiments using FACS-sorted
Gr1hiCD11b+F4/802 neutrophils. Since secretion varied between experiments but reliably did so in parallel for the different analytes, data were
analyzed by determining the fold difference between Irf52/2 and WT in each experiment and applying one-sample T-tests to the fold-differences for
the 3 experiments. P values for cells treated with CpG were 0.014 for TNF and ,0.01 for the other proteins, and 0.13–0.97 for other TLR ligands.
doi:10.1371/journal.pone.0108553.g003
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effect of the TLR9 agonist on other cytokines did not simply

indicate non-specific toxicity. No differences were seen in secretion

of IL-1b, KC, or MIP-2 between Irf52/2 and WT neutrophils

with any TLR agonist (data not shown, P values 0.076–0.66).

Although our primary aim was simply to see whether secretion

of cytokines/chemokines by neutrophils stimulated through any

TLR was Irf5-dependent, and thereby to provide functional

validation of the importance of Irf5 as a novel regulator of

neutrophil function implicated via the ImmGen regulatory model,

discussion of the relevant literature is warranted. Dependence of

TLR-induced inflammatory cytokine production upon Irf5 has

varied widely with the cell types studied [34,87,90,91], but there is

definitely precedent for TLR9-induced secretion of TNF being

reduced in mouse macrophages or dendritic cells lacking Irf5

[34,91]. Transfection of IRF5 into a human B lymphoma cell line

increased production of MIP-1a, MIP-1b, IP-10, and other

chemokines after stimulation by viruses in vitro [83].

Seemingly in contrast to our data, forced expression of IRF5 in

human macrophages decreased production of IL-10, and bone-

marrow-derived macrophages from Irf52/2 mice secreted more

IL-10 than did cells from wild type mice [92], but the cell types

and model systems differed from those used in our experiments.

Finally, Zhang et al. called into question many earlier reports of

cytokine secretion by neutrophils by using data from neutrophils

purified using antibodies to Ly6G rather than Gr-1 (which binds

both Ly6C and Ly6G) [39]. We used negative selection of cells

staining for F4/80 and bright staining for Gr-1, rather than simply

positive staining for Gr-1, and therefore undoubtedly achieved

better purification than in some early papers. However, the results

we obtained in a single experiment using Ly6G sorted cells are also

quite similar to those obtained by Zhang et al.; we agree that the

absolute amounts of TNF are small on a per-cell basis, but our

goal was to determine whether such secretion was Irf5-dependent

rather than to compare it to the much larger amount made by

macrophages.

Summary and Conclusions

Neutrophils exhibit a pattern of gene expression distinct from

that of other mouse leukocytes, with that distinction determined at

least as much by genes that neutrophils down-regulate (e.g., genes

related to translation) as by genes that they up-regulate.

Nevertheless, a moderate number of genes were relatively

neutrophil-specific and continued to be expressed after neutrophil

activation, and most of these genes, such as Stfa2l1 and Mrgpr2a
and b, are of unknown function. The major caveat to this

interpretation is that gene expression patterns in eosinophils have

not yet been reported in ImmGen or any other comprehensive

database.

Numerous changes in gene expression were seen after

neutrophil activation in vivo, particularly in peritoneal neutrophils

elicited with TG compared to peritoneal neutrophils elicited with

UA or SF neutrophils elicited with immune complexes. Most of

the differences between these three stimuli were quantitative

rather than qualitative. For example, changes in genes for

lysosome components and genes related to apoptosis were seen

with all stimuli but were greater in magnitude in TG neutrophils.

However, certain pathways were more specific to particular

stimuli. Genes related to the non-canonical NFkB pathway and to

the synthesis and use of glutathione were up-regulated in TG

neutrophils. Genes related to antigen processing and presentation,

uptake of modified lipoproteins, and the Nr4a family of

transcription factors were up-regulated in SF neutrophils. Recep-

tors for leukotrienes were up-regulated in UA neutrophils.

Finally, a regulatory model derived from ImmGen was used to

infer the involvement of many transcription factors and other

regulatory genes in up- and/or down-regulation of genes during

neutrophil activation. For example, Irf7 and Irf9 were implicated

in up-regulating a group of genes with increased expression in TG

or UA but not SF neutrophils. Irf5 was implicated in both up- and

down-regulation of many genes after all stimuli, and a novel role

for Irf5 in optimal induction of secretion of cytokines and

chemokines by a TLR9 agonist in neutrophils was confirmed

using Irf52/2 mice.

Three technical points must be discussed in considering the

validity of our data and their interpretation. First, since monocytes

contain 10–20 times as much mRNA per cell as do neutrophils, 1–

2% contamination could yield RNA that is 10–30% of monocyte

origin, so the possibility of monocyte/macrophage contamination

must be addressed in any study of gene expression in neutrophils

[13]. The finding that many genes were not expressed in

neutrophils but were expressed in all other leukocyte populations

argues against such contamination. In addition, a plot of gene

expression in macrophages versus TG-activated neutrophils

showed a poor correlation, leading to the conclusion that only 5

genes that were expressed at extremely high levels in macrophages

might give strong enough signals via contamination to produce

modestly elevated levels in TG neutrophils (data not shown).

Second, it is possible that some changes in gene expression among

neutrophils isolated from local sites actually derive from circulating

mediators rather than being elicited at the site of inflammation.

Arguing against this interpretation, the gene expression pattern in

bone-marrow neutrophils from arthritic mice was very similar to

expression in bone-marrow neutrophils from normal mice (data

not shown, and see Fig. 1B). Third, we are unable to address the

possibility that some of the differences seen comparing SF to TG

or UA neutrophils resulted from the time course (7 days versus 18

hours) rather than the stimuli, since there is no common time point

feasible for collection of neutrophils in all of these models.

The strengths of this study include the use of rigorous,

standardized protocols for collection of cells and data, both for

neutrophils and other leukocytes; the resulting ability to compare

neutrophils to numerous other leukocyte populations; and the

comparison of neutrophils activated in different ways in vivo. We

endeavored to begin analyses in an unbiased manner free of

hypotheses and to report all results regardless of novelty, so as to

establish a broad framework upon which we and others could use

this data-set as a resource for future hypothesis-driven experi-

ments.

The obvious limitation of this study is that most observations

were not confirmed at the level of protein expression or proof of

functional significance, the one exception being the demonstration

of the importance of neutrophil expression of Irf5 in optimal

secretion of multiple cytokines and chemokines. In addition, our

study would have been stronger if we had been able to include a

model of active bacterial infection. Since we must defend this study

in part as a hypothesis-generating exercise, it may be most

appropriate to end the discussion with some hypotheses:

N Some of the few genes that are highly specific to neutrophils,

such as Stfa2l1 and Mrgpr2a and b, will be found to be

essential for functions unique to neutrophils, such as NETosis

or other anti-microbial functions yet to be discovered.

N Proper regulation of anti-oxidant pathways and cellular

energetics, in part regulated by Nr4a family members, will

be found to be necessary for a neutrophil function essential to

the orderly development and resolution of acute inflammation,
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namely, promoting neutrophil cell death at the right time and

by the right mechanism(s).

N IRF family members will be important for induction of anti-

microbial and inflammatory mediators in neutrophils via

innate immune receptors.

N The limited capacity for translation in the mature neutrophil

will reveal a weak correlation between the amount of mRNA

and the amount of new protein produced, leading to new

insights into regulation of translation.

Supporting Information

Figure S1 Changes in gene expression in neutrophils activated

in vivo by different stimuli: synovial fluid (SF), thioglycollate (TG),

or uric acid (UA). A. Comparison of fold-changes in gene

expression relative to circulating neutrophils, among all 1283

genes showing significant variation across all conditions by

ANOVA. Non-transformed data are shown on a log scale. Log-

transformed data on a linear scale were used to calculate

correlation coefficients (r) and slopes. The slope in the middle

panel (1.08; 95% confidence interval 1.04–1.13) indicates higher

expression in TG than UA. B. Venn diagrams showing the

numbers of genes up- or down-regulated in the three activating

conditions. Top: fold-change .2 was used as the cut-off for all

conditions. Bottom: conditions were relaxed so that if one

condition had fold change .2, the others could have fold change

.1.5.
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stimulating condition.
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stimuli.
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File S1 Expression, in purified leukocyte populations in the

ImmGen database, of genes comprising a neutrophil signature in

the BioGPS database [47]. All genes in the BioGPS signature for

which there were comparable data in ImmGen are shown. Blue

indicates relatively low expression, red indicates high expression;

expression data were log-transformed and mean-centered for each

gene (i.e., row-normalized) using the HeatMapImage module of

GenePattern. Gene names are shown on the right, hierarchical

clustering of the expression patterns on the left, and ImmGen

populations (not clustered) along the top; text can be viewed using

a photo viewer with a magnification function. Neutrophil-related

populations at the left edge include common myeloid precursor

(SC_CMP_BM), granulocyte-monocyte precursor (SC_GMP_BM),

bone-marrow neutrophils (GN_BM), blood neutrophils (GN_Bl),

neutrophils from inflamed synovial fluid (GN_Arth_SynF), uric-

acid-induced peritoneal neutrophils (GN_UrAc_PC), and thiogly-

collate-induced peritoneal neutrophils (GN_Thio_PC).

(PNG)

File S2 Gene expression in mouse neutrophils. Expression of all

1283 probes that passed filters for analysis (see Methods) is shown,

both in individual samples and as means of 3–4 replicate samples.

Assignment to clusters based on similar patterns of expression

across 4 conditions is shown in the final 2 columns: i) using our

original notation, in order to show where clusters produced by

ExpressCluster were pooled after inspection, and ii) using notation

used in Figure 3A, which provides the numbers of probes in each

cluster.

(XLSX)
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